5 research outputs found

    Beyond developable: computational design and fabrication with auxetic materials

    Get PDF
    We present a computational method for interactive 3D design and rationalization of surfaces via auxetic materials, i.e., flat flexible material that can stretch uniformly up to a certain extent. A key motivation for studying such material is that one can approximate doubly-curved surfaces (such as the sphere) using only flat pieces, making it attractive for fabrication. We physically realize surfaces by introducing cuts into approximately inextensible material such as sheet metal, plastic, or leather. The cutting pattern is modeled as a regular triangular linkage that yields hexagonal openings of spatially-varying radius when stretched. In the same way that isometry is fundamental to modeling developable surfaces, we leverage conformal geometry to understand auxetic design. In particular, we compute a global conformal map with bounded scale factor to initialize an otherwise intractable non-linear optimization. We demonstrate that this global approach can handle non-trivial topology and non-local dependencies inherent in auxetic material. Design studies and physical prototypes are used to illustrate a wide range of possible applications

    Accelerated Discovery of 3D Printing Materials Using Data-Driven Multi-Objective Optimization

    Full text link
    Additive manufacturing has become one of the forefront technologies in fabrication, enabling new products impossible to manufacture before. Although many materials exist for additive manufacturing, they typically suffer from performance trade-offs preventing them from replacing traditional manufacturing techniques. Current materials are designed with inefficient human-driven intuition-based methods, leaving them short of optimal solutions. We propose a machine learning approach to accelerate the discovery of additive manufacturing materials with optimal trade-offs in mechanical performance. A multi-objective optimization algorithm automatically guides the experimental design by proposing how to mix primary formulations to create better-performing materials. The algorithm is coupled with a semi-autonomous fabrication platform to significantly reduce the number of performed experiments and overall time to solution. Without any prior knowledge of the primary formulations, the proposed methodology autonomously uncovers twelve optimal composite formulations and enlarges the discovered performance space 288 times after only 30 experimental iterations. This methodology could easily be generalized to other material formulation problems and enable completely automated discovery of a wide variety of material designs

    Accelerated discovery of 3D printing materials using data-driven multiobjective optimization

    No full text
    Machine learning can aid the discovery of useful 3D printing material formulations.</jats:p

    Shape patterns in digital fabrication: a survey on negative poisson's ratio metamaterials

    No full text
    Poisson’s ratio for solid materials is defined as the ratio of the lateral length shrinkage to the longitudinal part extension on a simple tension test. While Poisson’s ratio for almost every material in nature is a positive number, materials having negative Poisson’s ratio may be engineered. We survey computational works toward design and fabrication of negative Poisson’s ratio materials focusing on shape patterns from macro to micro scale. Specifically, we cover folding, knitting, and repeatedly ordering geometric structures, i.e., symmetry. Both pattern design and the numerical aspects of the problem yield various future research possibilities
    corecore